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Abstract 
This paper empirically assesses the effect of monetary policy on asset price bubbles and aims 
to disentangle the competing predictions of theoretical bubble models. First, we take 
advantage of the model averaging feature of Principal Component Analysis to estimate 
bubble indicators, for the stock, bond and housing markets in the United States and Euro 
area, based on the structural, econometric and statistical approaches proposed in the 
literature to measure bubbles. Second, we assess the linear and non-linear dynamic effects of 
monetary shocks on these bubble components using local projections. The main result of this 
paper is that monetary policy does not affect asset price bubble components, except for the 
US stock market. Overall, evidence tends to favor the prediction of rational bubble models. 
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1. Introduction 
 
Asset price bubbles are a threat to financial and macroeconomic stability. However, no 
consensus has been reached regarding how policymakers should deal with bubbles. The role 
of monetary policy remains disputed. Two closely related questions arise in the policy 
debate. First, does monetary policy contribute to fuel asset price bubbles? Second, is 
monetary policy able to deflate bubbles? This debate has recently resurfaced with the 
implementation of unconventional monetary policy since 2008 and their potential adverse 
effects on financial stability. There are two broad opposite views in the literature on this 
issue. Borio and Lowe (2002), Cecchetti et al. (2003) and Woodford (2012) are in favor of a 
“leaning against the wind” approach which considers that expansionary monetary policy 
contributes to the emergence of asset price bubbles and restrictive policies can reduce them.1 
More recently, Borio and Zabai (2016) and Juselius et al. (2016) fear that the benefits of 
unconventional monetary policies would decline while the risks to financial stability would 
increase. This view echoes the argument by Taylor (2009) that low interest rates in the United 
States (US) between 2001 and 2004 have triggered the housing market boom and subprime 
crisis. An alternative view, the “modified Jackson Hole consensus”, would not recommend 
using monetary policy to deal with bubbles and financial stability issues and rely on 
macroprudential tools (see e.g. Gerlach, 2010, Svensson, 2012, and Collard et al., 2017).2  
 
This policy debate reflects the lack of consensus in the theoretical literature on how to 
represent the formation and dynamics of bubbles.3 Within existing bubble models, the role of 
monetary policy is not clearly established: its effect on asset price bubbles depends on the 
nature of bubbles. First, in a rational bubble model à la Blanchard and Watson (1982), asset 
price is decomposed into a fundamental value, equal to the sum of expected cash-flows, and 
a bubble component, which is a rational stochastic deviation from the fundamental value 
and grows with the discount factor.4 Within this framework, Gali (2014) shows that bubbles 
are linked to monetary policy because the discount factor is related to the real interest rate. 
With nominal rigidities, central banks influence the real interest rate and restrictive 
monetary policy would increase the size of the bubble. Second, in models accounting for 
financial market imperfections, Allen and Gale (2000, 2004) suggest that expansionary 
monetary policy would feed bubbles through the credit dynamics. This transmission channel 
is also emphasized by Gruen et al. (2005) and Christiano et al. (2010) who suggest central 
banks to adopt a “leaning against the wind” approach by limiting sharp credit expansion. 
Third, Abreu and Brunnermeier (2003) and Ofek and Richardson (2003) develop models 
emphasizing informational frictions or heterogeneous beliefs. These models do not give 
much role to monetary policy as private agents’ behavior is the key determinant of bubbles. 
They arise after some positive news, generally technology innovations, triggering a rise in 
the fundamental value, which is amplified either by coordination failures of rational 
arbitrageurs or by investors’ overconfidence.5 The objective of this paper is to shed light on 
the policy debate and to disentangle empirically the competing theoretical predictions about 
the effect of monetary policy on asset price bubbles. 

                                                      
1 These authors also claim that price stability is not a sufficient condition to promote financial stability. Blot et al. 
(2015) find that there is no stable link between price and financial stability. 
2 Bernanke and Gertler (1999, 2001) suggest that a “cleaning afterward” approach would be more optimal. See 
Smets (2014) for a recent survey on the attitude of central banks towards financial stability. 
3 See Brunnermeier and Oehmke (2013) and Scherbina (2013) for surveys. 
4 Rational bubbles may also depend on fundamentals as illustrated by Froot and Obstfeld (1991). 
5 Those models emphasize the role of informational frictions, heterogeneous agents or beliefs and incentive 
distortions. Kindleberger (2005) and Schiller (2015) document those episodes in financial history when increases 
in asset prices have been observed after technological booms, which were believed to give rise to a “new era”.  
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We investigate whether monetary policy in the US and in the euro area (EA) affect asset 
price bubbles on stock, sovereign bond and housing markets.6 Contrary to the vast literature 
dealing with the impact of monetary policy on asset prices (see e.g. Rigobon and Sack, 2004), 
we focus on the effect of monetary policy on the bubble component of asset prices only. 
Bubbles are a concern for many reasons. First, they may generate a misallocation of capital. 
Second, increases in asset prices driven by the bubble component may entail risk for 
financial stability jeopardizing the functioning of the financial system. Third, bubble bursts 
are associated with financial crises and with deeper and longer recessions.7 Fourth, the 
transmission of monetary policy may be impaired if the dynamic of bubbles goes against the 
response of fundamentals to monetary policy. Thus, it is crucial to disentangle asset price 
movements driven by fundamentals from movements resulting from the bubble component. 
 
Because not all asset price variations are bubbles, we need to separate the wheat from the 
chaff. The main empirical challenge is to identify the fundamental value of an asset and its 
bubble component. Asset price bubbles arise in many theoretical frameworks, and empirical 
tests are generally ill-designed to identify bubbles as they fail to disentangle between 
bubbles and misspecifications of the underlying theoretical model (Gurkaynak, 2008). Three 
approaches may be considered to identify bubbles (structural, econometric and statistical), 
but none of them has reached consensus. First, according to a structural model, the bubble is 
a deviation of the asset price from expected discounted cash flows. Second, the fitted value 
of an econometric specification provides an approximation of the fundamental value 
accounting for a data-rich information set. Third, the literature has also relied on a statistical 
definition of excessive level of asset prices, measured with a statistical filter (see e.g.  Bordo 
and Wheelock, 2007, Goodhart and Hofman, 2008, or Jordà et al., 2015). All these approaches 
present advantages and weaknesses to estimate the fundamental and non-fundamental 
components of asset prices. 
 
The first contribution of this paper is to propose an agnostic and conservative method to 
single out the bubble component of a given asset. Using Principal Component Analysis 
(PCA), we extract the common denominator of structural, econometric and statistical 
approaches used in the literature and described above. Assuming that each of these 
approaches captures some properties of asset price bubbles, the main innovation of this 
method is to suppose that the first component, maximizing the common variance of these 
estimated models, will provide a robust measure of the bubble component. Said differently, 
the idiosyncratic dynamics of each approach will not be selected by the PCA. This method 
boils down to a model averaging of the structural, econometric and statistical approaches. To 
that end, we first estimate fundamental values from each approach and extract bubble 
components. We do so for stock, bond and housing prices in the US and the EA. Second, 
using the PCA, we compute bubble indicators for each market and each geographical area.  
 
The question of whether monetary policy may trigger asset price booms and busts has been 
extensively dealt with in the literature. Detken and Smets (2004), Ahrend et al. (2008) and 
Khan (2010) observe that stock and housing prices tend to increase excessively when short-
term interest rates are below the level suggested by a Taylor rule. Taylor (2009) asserts that 
monetary policy in the early 2000s has fuelled the housing boom in the US. This view has 
been challenged by Dokko et al. (2009) and Kuttner (2012) who suggest that the housing 

                                                      
6 We use the term “bubble” to describe significant deviations of a given asset price from its fundamental value (or 
best in-sample prediction or trend). The term “bubble” may be used interchangeably with the terms “deviations”, 
“booms and busts”, “misprincing” or “over and undervaluation”. 
7 It must be noted that financial crises are not only triggered by asset price bubble bursts. Financial leverage and 
credit booms also matter for financial stability (see Adrian and Shin, 2008). This issue is left for further research. 
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market dynamic would not have been strongly modified if interest rates had followed the 
Taylor rule, and by Del Negro and Otrok (2007) who also concluded that monetary policy 
weakly contributed to the housing price dynamic in the US. Besides, Bordo and Wheelock 
(2007) provide evidence of a weak correlation between interest rates and excessive stock 
price increases. However, these papers do not rely on a structural identification of the bubble 
component of asset prices but focus on episodes of asset price dynamics that they consider as 
excessive. The closest papers to ours are Basile and Joyce (2001) and Gali and Gambetti 
(2015), but they only rely on the rational bubble model. The former assess the contribution of 
monetary policy to the variance of bubbles. The latter suggest that monetary policy 
tightening in the US may increase asset prices depending on the size of the bubble 
component. A policy rate hike reduces the fundamental value, but increases the bubble 
component - since the bubble grows with the interest rate. For a small bubble component, the 
standard negative effect on the fundamental value dominates, whereas monetary policy 
tightening feeds the bubble and increases asset price when the bubble component is large. 
 
The second contribution of this paper is to assess the dynamic impact of monetary policy 
shocks on our bubble indicators. It departs from Gali and Gambetti (2015) in three ways. 
First, our definition of the bubble component does not rely exclusively on a rational bubble 
model but hinges on different representations of bubbles. Second, monetary shocks are 
identified by orthogonalizing the policy instrument to the central bank information set as 
well as to macroeconomic and financial variables following the Romer and Romer (2004) 
approach. Third, we account for both standard and unconventional monetary policy by 
using shadow rates estimated by Wu and Xia (2016) and Krippner (2013, 2014) as a single 
indicator of the overall monetary policy stance. We also disentangle the effects specific to the 
policy rate and central bank’s balance sheet policies in a second step. We investigate the 
dynamic impact of monetary policy by estimating local projections à la Jorda (2005) over a 2-
year horizon, and are able to compare the response to shocks to different instruments of the 
bubble indicators across stock, sovereign bond and housing markets. We take advantage of 
the flexibility of local projections to analyze the potential asymmetric effects of restrictive 
and expansionary monetary shocks. 
 
The main result of this paper is that the impact of monetary policy on asset price bubbles is 
limited overall. A key message is that these effects are not symmetric and this calls for 
differentiating the responses to restrictive and expansionary shocks. The hypothesis that 
expansionary monetary policy does inflate bubbles is rejected in all cases except for stock 
market bubbles in the US. At the opposite, we find that expansionary monetary policy would 
slightly deflate bubbles on the US housing market and on the EA bond and housing markets, 
consistent with the prediction of rational bubble models. We then shed light on three policy 
issues. The risk that unconventional policies would inflate asset price bubbles does not 
materialize in the data and evidence even tends to support the opposite mechanism, i.e. the 
prediction of rational bubble models. We also find that the “leaning against the wind” 
strategy would not be able to deflate asset price bubbles except on the EA stock market. At 
the opposite, an expansionary interest rate policy would inflate stock market bubbles on the 
US and EA, but deflate them on EA bond and housing markets, once again consistent with 
the prediction of rational bubble models. 
 
The remainder of this paper is organized as follows. Section 2 addresses the identification of 
asset price bubbles and section 3 the empirical strategy. Section 4 presents the main results 
while section 5 focuses on the policy issues. Section 6 concludes. 
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2. Identifying asset price bubbles 

 
Bubbles are not observed, so the main challenge of this paper is to measure them. However, 
there is no consensus on the most appropriate way to identify empirically asset price 
bubbles, which reflects theoretical controversies. These are illustrated by Brunnermeier 
(2008): “Bubbles are typically associated with dramatic asset price increases followed by a collapse. 
Bubbles arise if the price exceeds the asset’s fundamental value”. Two interpretations of bubbles 
emerge from this definition. Bubbles would either rely on the notion of a fundamental value 
or on excessive variations in asset prices. Thus, we consider alternative specifications based 
on structural, econometric and statistical approaches. None of these models has reached 
consensus, however all together they may capture the main properties of asset price bubbles. 
 
2.1. A range of bubble models 
 
First, we estimate a simplified representation of the expected discounted cash-flow model by 
OLS (equation 1) and using an error-correction model (ECM, equation 2).8 Under rational 
expectations, without imperfect information and when agents are risk-neutral, the asset 
fundamental value is the expected discounted cash-flows. For stock and housing markets, 
prices are determined either by dividends or rents, and the long term interest rate considered 
as a discount factor. We depart from the standard model by adding a proxy for the risk-
premium, which would account for a risk-taking channel of monetary policy. Consequently, 
the bubble component is supposed to be purged from risk premia, which may also influence 
asset prices. For the bond market, prices are determined by the long-term interest rate and 
the proxy for the risk premium (coupons being constant over the lifetime of the asset). These 
three models are estimated with a standard estimation method: OLS (equation 1) and with 
an ECM (equation 2) to capture the possibility that prices are a combination of a long-run 
trend and short-run dynamics: 

                         
           (1) 

 
       (       

    
       

       
    ) 

    ( )       ( )       ( )       ( )       
               (2) 

 
where yt is the asset price, Dt is the associated cash flow, rt is the discount factor measured by 
the risk-free interest rate, and    a proxy for the risk premium. Equations (1) and (2) enable 
to decompose a given asset price between two components: a fundamental component, that 
includes a component related to risk-taking, and the residuals.  
 
An alternative approach –econometric– is to estimate empirical models where asset prices 
are represented by projections against a wide range of variables. By selecting a large set of 
macroeconomic and financial variables, equations (3) and (4) provide estimates, using OLS 
and ECM models respectively, of the best in-sample prediction of a given asset price 
conditional to a given information set.  

       ( )                   
                (3) 

 
        (       

    
 ( )      
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 ( )        
 ( )       

 ( )       
      (4) 

 
Mt and Ft are vectors of macroeconomic (rents and dividends, industrial production, GDP, 
real disposable income, inflation, confidence indicators and oil prices) and financial variables 

                                                      
8 We discuss later alternative estimations of the expected discounted cash-flow model. 
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(real long term interest rate, monetary and credit aggregates, other asset prices and the VIX 
indicator). Lags of the endogenous variable are also included in the estimation. For all 
explanatory variables, 3 lags are included in the specification.9 While equations 1 and 2 are 
considered as representing the standard structural model for asset prices adjusted for a time-
varying risk premium, the econometric approach of equations 3 and 4 is agnostic and should 
be considered as the best in-sample prediction of asset prices taking into account a large set 
of relevant information. 
 
Our estimated bubble components are based on the definition that asset prices are a linear 
combination of the fundamental component and a remaining part that we label the bubble 

component. Because standard residuals (  
   ,   

   ,   
    and   

    in the present case) 
would only capture a static and instantaneous deviation of a given asset price from its 
fundamental value, we consider a measure that takes into account the cumulative and 
dynamic process associated with a bubble formation. According to Filardo (2004), small 
deviations from fundamentals are irrelevant. These bubbles would result from anomalies in 
financial markets, are likely to be small and have their own generating process. Therefore, 
the cumulated residuals would provide a better measure of significant and persistent 
deviations from fundamentals.  
 
The construction of our model-specific bubble components consists in two steps. First, 
residuals of equations (1) to (4) are filtered using the Christiano-Fitzgerald (CF) method, so 
that we focus on the low-frequency deviations from fundamentals not the high-frequency 
ones. Second, the filtered residuals are cumulated. For each model i, we call ri,t the 
cumulative sum of the filtered residuals fri,t as long as these residuals have the same sign. 
This measure is reset to zero whenever the CF-filtered residuals change sign.  

{
                                                           

                                                                    
      (5) 

 
We also consider a model corresponding to the statistical approach where bubbles are 
defined as significant deviations from a trend. Most of the papers in the literature have relied 
on a statistical filter to decompose asset prices between trend and cycle. Goodhart and 
Hofman (2008) define boom periods as a persistent deviation from the trend of more than 5% 
and lasting at least 12 months while Detken and Smets (2004) use a 10% threshold. Alessi 
and Detken (2011) and Bordo and Jeanne (2002) define the boom as a 1.75 and 1.3 standard 
deviation at least from the trend respectively. For Bordo and Landon-Lane (2013), the boom 
occurs if a 5 % increase in house prices (10% for stock prices) is followed by a 25% correction 
within two years. In Jorda et al. (2013, 2015), the bubble is identified after a 1 standard 
deviation from the trend followed by a correction of 15% at least, over a 3-year period. Here, 
we identify bubbles as a 1.5 standard deviation at least from the CF-trend, so 87% of the data 
lies within the bounds.10 A synthetic description of all models is presented in Table 1. 
 
2.2. Data 
 
We estimate these five models for three asset prices: stocks, sovereign bonds and housing. 
Data are available from January 1986 to August 2016 in the US and from January 1999 to 
June 2016 for the EA (see Table A in appendix for data description and sources and Table B 
for descriptive statistics). The stock price indexes are the S&P500 for the US and the 

                                                      
9 Specifications with leads have also been tested but do not change the result and the residual dynamics. 
10 The main advantage of the CF filter compared to the Hodrick-Prescott filter is that the former is one-sided so 
that the estimation does not affect the last point of the sample. 
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Eurostoxx for the EA (listing the largest 295 firms). Each asset price is deflated by the CPI. 
Bond prices are government 10-year benchmark bonds. House prices in the EA stem from a 
quarterly index for residential property prices calculated by the ECB.11 In the US, we use 
Shiller’s benchmark monthly index. 
 
Considering the cash-flow model for asset prices, fundamental value is a function of cash-
flows (dividends for stocks and rents for housing prices) and the discount factor. In the US, 
the Bureau of Economic Analysis provides dividends series paid by corporations and rents 
received by households. Data are available at a quarterly frequency. For the EA, quarterly 
dividends paid by financial and non-financial corporations and quarterly rents received by 
households are available from Eurostat for the five biggest EA countries. The long-term 
interest rates – from benchmark government bonds – are used as the discount factor. The 
standard model may be extended to account for a time-varying risk-premium. To this end, 
we use the VIX indicator – the Chicago board of trade volatility index –, which is often used 
as a proxy for uncertainty and market appetite for risk. Yet, this model may not fully account 
from all available information. We also identify the fundamental component with a model 
estimated on a large set of information, including macroeconomic and financial indicators 
such as: real disposable income, inflation, real GDP, industrial production, oil prices, 
confidence indicators,12 financial stress indicators (VIX and CISS), 3-month interbank interest 
rate, monetary (M2 in the US and M3 for the EA) and credit aggregates (credits granted by 
commercial banks in the US and credit counterparties of monetary aggregate in the EA). 
 
We estimate the five models for the three asset prices for the US and EA and extract 15 
bubble components for each area. Table C in appendix provides descriptive statistics for the 
30 series. Table 2 provides the correlation structure for each market and geographical area as 
well as p-values for the Cumby-Huizinga test for autocorrelation and for the Portmanteau 
test for white noise. These tests suggest that these residuals are not perfectly independent 
and identically distributed (i.i.d.) as expected in the light of our research question and may 
be capturing the persistent deviations from a fundamental price that we label as bubbles. 
 
2.3. A Principal Component Analysis of bubbles 
 
In order to summarize the information provided by the cumulative and dynamic residuals of 
the four estimated models and by the statistical model, we perform a Principal Component 
Analysis (PCA) to estimate a unique indicator maximizing the common variance of the 
individual bubble series. In addition to reduce information in one single series, another 
advantage of the PCA is to remove the evolution of each series that would be specific to that 
model and provides a robust measure of the bubble component of asset prices.  
 
More specifically, PCA seeks a linear combination such that the maximum variance is 
extracted from the variables. Components reflect both common and unique variance of the 
variables and may be seen as a variance-focused approach seeking to reproduce both the 
total variable variance with all components and to reproduce the correlations. In practice, 
computing PCA of a dataset X, an (m × n) matrix, where m is the number of variables and n 
is the number of observations, entails computing the eigenvectors and eigenvalues of the 
covariance matrix of X. The eigenvector with the highest eigenvalue, measuring the variance 
in all variables which is accounted for by that eigenvector, is the first component. 

                                                      
11 Quarterly data have been linearly interpolated to monthly frequency. 
12 For the EA, we use confidence household and industry indicators are from the European Commission while in 
the US we use the Conference Board consumer confidence indicator and the ISM confidence indicator for firms. 
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We compute bubble indicators for each market (stock, bond and housing) by estimating the 
first component of the 5 individual bubble components of each market. Table 3 provides the 
main characteristics of the estimation of our three bubble indicators for each geographical 
area. The stock, bond and housing bubble indicators capture 45, 40 and 44% of the variance 
of the respective 5 bubble components in the US and 39, 41 and 39% in the EA. Besides, the 
highest loading factors are generally on the error correction model estimation of the cash-
flow model and the econometric model. The 15 individual bubble components and the 3 
bubble indicators are plotted in Figures 1 and 2 for the US and the EA respectively.  
 
In the US, the bubble indicator for stock prices coincides with the dummy of the statistical 
approach where bubbles (respectively crashes) are identified as a deviation of prices above 
(respectively below) their trend. The dotcom bubble is also clearly identified by the PCA and 
the pure statistical approach. The bubble period would have started in 1999 and would have 
stopped in 2000. A bubble is also identified in 2007 followed by a crash in stock markets in 
late 2008. For the bond markets, there are peaks in 1993, 1998 and troughs in 1995 and 2000, 
but much less over or undervaluation afterwards. Turning to the housing market, there is a 
clear disconnection between the outcome of the statistical approach and the PCA bubble 
indicator. A peak for the PCA is reached by the end of 2006 and has then been followed by a 
bust in 2008. Over the end of period, the PCA is growing positively, indicating a bubble on 
the US housing market, but which is yet of lesser magnitude than in 2006. 
 
In the EA, a stock price bubble, signaled by a positive dummy, would have occurred from 
2000 until 2001 and from 2007 until 2008. Bust periods in the EA stock markets are identified 
from the end of 2002 to mid-2003 and from 2008 – after the Lehman Brother collapse – until 
2009. On the EA bond markets, peaks for PCA are observed in 2005, 2010, 2012 and 2015. It 
should be pointed out that the PCA indicator is positive from 2008 until 2010, which is 
counterintuitive as this period has been marked by the start of the European sovereign debt 
crisis. The positive bubble is also identified in the period preceding the “Whatever it takes” 
announcement made by Mario Draghi in July 2012 at a time where sovereign risk premia 
rose significantly. On the housing market, the peak of PCA is reached later in 2010, a date 
considered as a bust period with the statistical approach. This suggests that our 
identification matches periods where this issue has been raised in the media and in the 
public debate. Finally, the bubble indicators at the end of the sample look on the upside in 
the US and this pattern is common to the 3 markets, whereas evidence of a growing bubble 
appears only on the housing market in the EA.  
 
Table 4 shows the correlation structure between the different bubble indicators. They appear 
more correlated between themselves in the US than in the EA. The correlation is between 
0.18 and 0.34 in the US whereas around -0.24 and 0.37 in the EA. Moreover, Table 4 also 
provides the correlation for each market between the bubble indicator and its related 
estimated fundamental.13 It appears that the correlation is negative on all markets in the US, 
while it is positive for the EA stock market and negative otherwise. 
 
2.4. Sensitivity analysis 
 
The baseline bubble indicators are based on a set of hypotheses. We provide an analysis of 
the sensitivity of the properties of our bubble indicators to some of these assumptions. First, 

                                                      
13 The fundamental is computed as the first component of a PCA estimation comprising the predicted values of 
the four estimated models listed above and a dummy that equals one when a given asset price is within the 1.5 
standard-deviation bands around its trend. 
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we may consider reversing the order of the steps of the construction of the indicator. The 

PCA is estimated on   
   ,   

   ,   
   ,   

    and r5, instead of being estimated on cumulated-
filtered residuals. We then filter the estimated first principal component and apply the 
cumulative sum to the filtered series. The model averaging step is therefore performed on 
the deviations from fundamental values and trend, and then we compute the filtered and 
cumulated components to capture the bubble processes. The baseline measures are then 
compared to the alternative ones. Table 4 shows that their correlations are on average 0.84, so 
the bubble indicators appear robust to a change in the ordering of the procedure. 
 
Second, the estimation of the cash flow model could be biased by endogeneity. To account 
for potential endogeneity issues, we estimate equation (1) with GMM, using industrial 
production and GDP as instruments for cash flows. Moreover, one limitation of our analysis 
due to data availability is that we include contemporaneous cash-flows whereas the expected 
cash-flow model relies on the forward-looking nature of asset prices. This may introduce a 
bias in the measurement of bubbles. Consider the case where the central bank implements an 
expansionary monetary policy. Due to the transmission lags, the fundamentals do not 
immediately improve. However, rational investors anticipate an improvement of economic 
perspectives and henceforth a rise in future cash-flows, so the asset price increases. If our 
model fails to account for this rise in expected cash-flows, the increase in the asset price is 
mistakenly considered as a bubble. In order to account for expected cash-flows, we estimate 
equation (1) including the forward values, 12 months and 36 months ahead, of the respective 
cash-flows. We estimate this second model with GMM and use private and central bank 
output forecasts as instruments for future cash-flows. We acknowledge that the realized 
forward values are not expectations of these cash-flows, but such data series are not 
available at the aggregate level or over our whole sample. Yet, estimating equation (1) with 
forward values and GMM enables to assess, under some assumptions, the sensitivity of our 
baseline estimates to the forward-looking behavior of investors. The correlations with the 
baseline bubble indicators, shown in Table 4, are on average 0.97 and at minimum of 0.91.14 
 
We assess whether the estimation of the different bubble indicators depends on the sample 
considered. Therefore we estimate the PCA model over 3 subsamples in each area (1986-
1996, 1996-2006 and 2006-2016 in the US and 1999-2005, 2005-2010 and 2010-2016 in the EA) 
and predict the first principal component over the entire sample using the subsample 
estimates. Table 4 also provides the correlation coefficients of baseline bubble indicators with 
subsample-estimated ones. The correlations are on average 0.92 and at minimum of 0.67. 
 
We also examine how much the identification of our bubble components is driven by specific 
bubble models. By construction, the PCA overweighs models with a high correlation and 

down-weighs models that stand alone. Table 2 shows that the correlation between   
    and 

  
   is high across markets and geographical areas, and Table 3 confirms that the PCA 

therefore attributes higher eigenvalues to the corresponding two series: r2 and r4. We thus 
estimate alternative bubble components without the r4 series. The correlations with baseline 
bubble indicators are on average 0.79 (with a minimum of 0.48 for the US bond market). 
 
Finally, we investigate how much the parameters of the CF band-pass filter affect our 
estimation of the duration of bubble cycles. In the baseline, the procedure filters out 
stochastic cycles for periods smaller than 18 months and higher than 96 months (8 years) and 
this assumption constrains the duration of the estimated bubble cycles. Drehman et al. (2012) 
characterize the length of cycles disentangling short-term and medium-term cycles for 

                                                      
14 Note that the samples when considering forward values are shorter of 12 or 36 observations than the baseline. 
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several indicators, including house and equity prices. They suggest that house and equity 
price medium-term cycles have a duration of 10 ½ years and 9 ½ years respectively. To 
account for a longer duration of cycles, we augment this range to 15 from 144 months. The 
correlations with baseline bubble indicators are on average 0.75 and at minimum of 0.58 in 
the case of the US housing market. 
 

3. The empirical strategy 
 
Analyzing the effects of monetary policy requires addressing issues about the identification 
of exogenous monetary shocks. Several methods have been used in the empirical literature 
and may lead to some discrepancies in the responses to monetary policy shocks.15 Our 
baseline choice is to resort to the Romer and Romer (2004)’s approach augmented following 
insights from the information friction literature. Concretely, the identification of shocks 
accounts for the information set of both policymakers and private agents. We also use 
alternative approaches based on high frequency event-study assumptions following Kuttner 
(2001) or based on the estimation of forward-looking Taylor rules where residuals are 
considered as the monetary innovation. We then assess the impact of monetary shocks on 
asset price bubbles with the local projection method proposed by Jorda (2005). This method 
is flexible and may easily account for potential asymmetries in the transmission of monetary 
policy, and allow us to disentangle the impact of restrictive and accommodative shocks. 
 
3.1. Local Projections 
 
Assessing the impact of shocks on a given economic variable may be realized either through 
VAR models or with Jorda’s Local Projection method. Whereas the first method enables to 
take into account the intertwined dynamics of a set of variables, it may be imposing 
excessive restrictions on the endogenous dynamics and may be prone to bias if the model is 
misspecified. The second method offers more flexibility in the estimation. In linear stationary 
settings, the out-of-sample forecasting performance of VARs and local projections is quite 
similar (see Marcellino et al., 2006, and Kilian and Kim, 2011). However, because a linear 
low-order autoregressive representation of the data generating process of macroeconomic 
time series may be deceptive, the robustness of local projections to model misspecification 
and non-linearity makes them an appealing procedure to recover dynamic responses to 
exogenous shocks. Considering that these exogenous structural shocks are identified ex ante, 
Jorda (2005) suggests estimating a set of h regressions representing the impulse response of 
the dependent variable at the horizon h to a given shock at time t: 

             ∑                    
               (6) 

 
where      is the dependent variable – the bubble indicator - at the horizon h,    represents 
the monetary shock, either to the overall policy stance or to conventional and 
unconventional measures specifically, yt-i are lags of the dependent variable (that we set to 3 
based on the non-significance of additional lags), and    is a vector of controls including the 
bubble indicators of the two other asset price markets. We set h to 24 periods to measure the 
effect of monetary shocks on bubble indicators over 2 years. This equation may be easily 
modified to account for non-linearities: 

                              ∑                    
                   (7) 

 
where Dt is a dummy variable for expansionary monetary policy shocks. This specification 
aims to single out the potential asymmetric effects of restrictive (   ) and expansionary 

                                                      
15 See Coibion (2012) for a discussion. 
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(        ) monetary shocks on bubble indicators. Finally, because the estimated monetary 
shocks used in equations (6) or (7) are generated regressors that might cause biased standard 
errors, we compute heteroskedasticity and autocorrelation robust Newey-West standard 
errors assuming that the autocorrelation dies out after three lags.16 This correction also 
enables to control for potential heteroskedasticity and auto-correlation of the residuals. 
 
3.2. Identification of monetary shocks 
 
The local projection method requires identifying monetary shocks ex ante. The question of 
the most relevant identification strategy remains an open question. Empirical literature on 
monetary policy has often resorted to VAR models. However, timing assumptions in 
recursive identifications – reasonable for real variables and their sluggish reaction to shocks 
and low sampling frequency – are not relevant when applied to financial variables or fast-
moving variables. There is indeed no rationale to suppose that some asset prices move faster 
than others. Romer and Romer (2004) regress the intended federal funds rate change on the 
information set of the monetary authority to purge endogenous responses to current and 
expected future economic developments.  
 
Because of different information sets (Romer and Romer, 2000, or Blinder et al., 2008), the 
Romer and Romer (2004)’s identification approach may underestimate the extent to which 
market participants are able to predict future interest rate decisions. As discussed in 
Blanchard et al. (2013) and Ricco (2015), the presence of information frictions significantly 
modifies the identification problem. We propose an identification that combines insights 
from Romer and Romer (2004) and from the information frictions literature. We thus require 
the estimated monetary shocks to be orthogonal to both central bank’s and private agents’ 
information sets and to macro and financial market information. Finally, in a context of 
imperfect information, the new information is only partially absorbed over time and, 
estimated surprises are likely to be a combination of both current and past structural shocks. 
 
Our baseline measures of exogenous monetary shocks are based on the shadow rate measure 
of Wu and Xia (2016). Because monetary policy has taken many different dimensions over 
the last years and we ought to consider shocks to unconventional instruments and 
communication policies (forward guidance, for instance) in addition to shocks to the 
conventional instrument, we use this shadow rate measure that translates these various 
dimensions in a single variable expressed in interest rate space to measure the overall stance 
of monetary policy (labelled MP). In a second step, we also estimate shocks specific to the 
policy rate (labelled PR) and to an indicator of the central bank balance sheet size (labelled 
Unconv) to further analyse the response of bubble indicators to conventional and 
unconventional policies in normal and exceptional times respectively. For the former, we 
consider the federal funds target rate for the US and the EONIA rate for the EA. For the 
latter, we consider the monthly change in the size of the balance sheet for the Federal 
Reserve and the monthly change in the sum of two items of the ECB weekly financial 
statements: the long-term refinancing operations (item 5.2) and securities held for monetary 
policy purposes (item 7.1 including the securities market program, the three covered bond 
purchase programs, the asset-backed securities purchase program and the public sector 
purchase programme).  

                                                      
16 We have also computed standard errors robust to misspecification using the Huber-White-sandwich estimator 
and they provide smaller confidence intervals around the point estimate. This generated regressor issue is 
common to all empirical studies estimating exogenous shocks in a first step as in Romer and Romer (2004), but is 
more acute when the generated regressors are not normally distributed. 
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The baseline shock to the overall monetary stance and its two alternatives are estimated with 
the following equations from which we extract the residuals: 

                                            
                               (8) 

  
            

                  (9) 

 
where it is the monetary policy instrument. We assume that the monetary shock must be 
orthogonal to the contemporaneous policymakers’ information set Ωt, to the private agents’ 
one Ψt, to lagged financial market variables embedded in Xt-1, and to a vector Zt of 
contemporaneous macroeconomic variables. This shock to the overall monetary policy stance 
is labelled MP-Shocks-RR. A consequence of the timing of the right-hand-side vectors in 
equation (8) is that monetary shocks affect contemporaneously financial market variables, 
but do not affect contemporaneously central bank’s and private agents’ information sets or 
macroeconomic variables. We believe that the opposite assumptions that monetary shocks 
are only based on past data or that they do not influence financial markets in real-time are 
fragile.17 The policymakers’ information set Ωt comprises the level and change in ECB (resp. 
FOMC) inflation and output projections for current and next calendar years, Ψt includes the 
level and change in ECB (resp. US) SPF inflation forecasts for 1, 2 and 5 years ahead (resp. 
next quarter and next year), Xt contains the CISS (resp. the VIX) and the oil price growth rate, 
and Zt comprises current and lagged values of the inflation rate, industrial production and 
the monthly-interpolated real GDP growth rate.18 
 
When extracting exogenous monetary shocks, the inclusion of both private and central bank 
forecasts in the regression model enables us to deal with three concerns. First, private agents 
and policymakers’ information sets include a large number of variables. Forecasts have the 
advantage of encompassing rich information sets. Bernanke et al. (2005) show that a data-
rich environment approach modifies the identification of monetary shocks. Forecasts work as 
a FAVAR model as they summarise a large variety of macroeconomic variables as well as 
their expected evolutions. Second, forecasts are real-time data. Private agents and 
policymakers base their decisions on their information set in real-time, not on ex-post revised 
data. Orphanides (2001, 2003) show that Taylor rule-type reaction functions estimated on 
revised data produce different outcomes when using real-time data. Third, private agents 
and policymakers are mechanically incorporating information about the current state of the 
economy and anticipate future macroeconomic conditions in their forecasts and we need to 
correct for their forward-looking information set. 
 
We use macroeconomic forecasts from central banks (ECB and FOMC projections) and 
private agents: ECB and US Surveys of Professional Forecasters (SPF). The ECB/Eurosystem 
staff macroeconomic projections for the EA are produced quarterly since June 2004. They are 
published in March, June, September and December and are presented as ranges for annual 
percentage changes in both HICP (the Harmonized Index for Consumer Prices) and real 
GDP. The FOMC publishes forecasts for inflation and real GDP growth twice a year in the 
Monetary Policy Report to the Congress since 1979. Since October 2007, the publication of 

                                                      
17 One could argue that there may also be information frictions in financial markets and that financial variables in 
t-1 do not incorporate information news from t-2, t-3, etc. We control for this by estimating equation (8) with two 
additional lags. The correlation between this alternative series and the baseline is 0.99 and 0.96 in the US and in 
the EA respectively. These estimates are available from the authors upon request. 
18 As ECB projections are available since 2004, equations (8)-(9) are estimated with SPF forecasts only before 2004 
and including both after 2004. FOMC projections are available since the beginning of the sample, but with a lower 
frequency. The series have been constant-interpolated to monthly frequency. We assess the robustness of our 
identification with Greenbook projections which have a higher frequency. The alternative series of monetary 
shocks using Greenbook projections instead of FOMC projections has a 0.91 correlation with the baseline series. 
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these FOMC forecasts has become quarterly and its horizon extended by one additional year. 
FOMC forecasts for current and next year was realized each year in January/February and 
June/July until 2007Q3, then in January, April, June and October until 2012Q4, and since 
then in March, June, September and December. We consider forecasts of the Personal 
Consumption Expenditures (PCE) measure of inflation and real GDP. These forecasts are 
published as two ranges encompassing all individual FOMC member’s forecasts: the “full 
range” includes all forecasts while the “central tendency” removes the three highest and 
three lowest forecasts. As standard in the literature, we use the midpoint of the full range. 
The ECB’s SPF is a quarterly survey of expectations for the rates of inflation, real GDP 
growth and unemployment in the EA. Participants are affiliated with financial or non-
financial institutions in the European Union. SPF forecasts are produced in February, May, 
August and November. HICP is measured as average annual percentage change for current 
and next years. The US SPF is collected from approximately 40 panelists and published by 
the Federal Reserve Bank of Philadelphia. SPF forecasts are also published in February, May, 
August, and November, and CPI forecasts are provided as year-over-year percent changes. 
We consider the median of individual responses as the SPF inflation forecast in our analysis. 
These benchmark monetary shocks are estimated over the full sample for the US but only 
since 2004 for the EA because of the data availability constraint mentioned beforehand. 
 
3.3. Alternative measures of monetary shocks 
 
A first alternative is to follow Kuttner (2001)’s high frequency methodology to identify 
monetary policy shocks in both the EA and the US using changes in the price of futures 
contracts. Kuttner (2001) identifies monetary surprises by accounting for the forward-
looking nature of financial data. For a monetary policy event on day d of the month m, the 
monetary shock can be derived from the variation in the rate implied by current-month 
futures contracts on that day. The price of the future being computed as the average monthly 
rate, the change in the futures rate must be augmented by a factor related to the number of 
days in the month affected by the change: 

         
 

   
(    

        
 )          (10) 

 

        is the unexpected interest rate variation which constitutes a monetary shock,     
  is 

the current-month futures rate and D is the number of days in the month and d the day of the 
decision. One issue with the Kuttner measure is that it focuses on futures contracts about 
interest rate only. However, monetary policy has taken many different dimensions over the 
last years and Wu and Xia (2016) have proposed shadow rate measures that capture the 
different dimensions of monetary policy in a single variable expressed in interest rate space. 
However, their measure has a monthly frequency. Krippner (2013, 2014) has estimated 
shadow short rate (SSR) series at the daily frequency and it therefore enables to apply the 
Kuttner’s high frequency event-study identification of monetary surprises to the daily 
variation in SSRt on the policy announcement day:  

ϵkripp,t = SSRt - SSRt-1              (11) 
 
Because shadow rate measures are not calendar-based instruments like fed funds futures, 
there is no need for an adjustment for the remaining number of days. These shocks (labelled 
MP-Shocks-HF) rely on the financial market participants’ interpretation of the overall 
monetary news disclosed that day, and include private reactions to central bank 
conventional or unconventional decisions, and central bank communication released at the 
same time. 
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A second alternative for identifying monetary surprises is to estimate a forward looking 
Taylor rule equation augmented with oil prices and a financial stress index (included in the 
vector Yt). This equation is estimated over the full sample. The monetary policy shock 
(labelled MP-Shocks-TR) is then the residuals of the following equation:  

                                                  (12) 
 
Figure 3 plots the shocks to the overall monetary policy stance using the baseline approach 
following Romer and Romer (2004) and the two alternative shock series described in this 
subsection, for the US and the EA. Table 5 provides descriptive statistics for these different 
monetary shocks and their correlation. 
 
3.4. Relevance of monetary shock measures 
 
We assess the relevance of the identification strategy in two ways. First, we assess the 
normality and autocorrelation of the estimated shock series. Table 5 also provides the 
outcomes of these standard tests. These results call for putting less emphasis on Taylor rule 
type shocks in the US as these shocks exhibit auto-correlation. Figure A in the Appendix 
plots the distribution of the estimated shocks. Second, for our estimated series of monetary 
shocks to be relevant, they need to be unpredictable from movements in data. We assess the 
predictability of the estimated shock series with Granger-causality type tests using 9 
macroeconomic and financial variables. Table 5 shows the adjusted R² and F-stats of an OLS 
estimation that aims to test the null hypothesis that our estimated series of exogenous shocks 
are not predictable. It shows that the Romer-Romer-type shock series are relevant to be used 
in our second-stage estimations. 
 

4. The effect of monetary policy on asset price bubbles 
 
As emphasized previously, there is no consensus in the theoretical literature about the effect 
of monetary policy on asset price bubbles. In the “leaning against the wind” approach, a 
restrictive monetary policy shock would reduce the size of bubbles. However, Gali (2014) 
show that a restrictive monetary policy would increase the size of bubbles. Finally, other 
models of asset price bubbles mainly focus on the behaviour of investors to explain the rise 
and growth of bubbles, so that bubbles are disconnected from monetary policy. The 
empirical strategy aims to disentangle between these three possible responses of asset price 
bubbles to monetary shocks. To that end, we first deal with the linear effect of monetary 
policy and then analyse potential asymmetries in the response of asset price bubbles to 
expansionary and restrictive shocks. 
 
4.1. The linear effects of the overall monetary stance 
 
The responses over 24 months of the US and EA asset price bubbles – stock, bond and 
housing – to the baseline and alternative restrictive monetary shocks (MP-Shocks-RR, MP-
Shocks-TR and MP-Shocks-HF) is illustrated by figure 4. For clarity, the 95% confidence 
interval is plotted for the baseline shock only (MP-Shocks-RR). 
 
Starting with the US, the response of the bubble indicator for the stock market is positive and 
significant around the 14th and 18th months after the shock. This result appears consistent 
with the main results of Gali and Gambetti (2015). The increase in the shadow rate would 
inflate the bubble on the stock market instead of reducing it. The responses to the alternative 
monetary shocks have similar dynamics. The response of bubble indicators for the bond and 
housing market are not significant. For the EA, none of the responses to monetary shocks are 
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significant up to the 24-month horizon. Overall, the absence of significant responses of asset 
price bubbles in five out of six cases suggests that monetary policy, both in the US and in the 
EA, does not fuel bubbles and would not be able to deflate them. 
 
4.2. Alternative estimates 
 
We assess the hypothesis that the absence of significant results in most of the previous cases 
is not a statistical artefact resulting from the model-averaging feature of the PCA. We 
estimate the effect of monetary shocks on the individual r1, r3 and r5 series using the same 
framework as in the baseline case (see equation 6). The null hypothesis we test here is that 
these individual responses are different one from each other and have opposite signs. Figure 
5 plots these individual responses (with confidence intervals for the r1 model only for clarity 
as all confidence intervals are overlaid on each other) for each market in the US and EA. It 
shows that the responses do not differ significantly, so we can reject this null hypothesis. The 
baseline results do not mask heterogeneity in the individual responses among the several 
models used to compute the bubbles indicators or significant responses of a specific model. 
 
4.3. Non-linear evidence 
 
We then investigate the potential asymmetries in the response of bubbles to monetary 
shocks. We disentangle between restrictive and expansionary shocks. Responses of bubble 
indicators to the baseline monetary shock are plotted in figures 6 and 7 for the US and the 
EA respectively. For comparison, the linear response of bubble indicators is also represented. 
 
For the US, the responses of the stock bubble indicator shows that a restrictive shock has no 
significant effect whereas an expansionary shock would increase the size of the bubble. This 
effect is significantly different from zero and from the linear response. Monetary shocks 
account for around 3% of the variance of the bubble component.19 The effect shown in Figure 
4 therefore seems to derive from the assumption that the impacts of restrictive and 
expansionary shocks are symmetric. The asymmetric result suggests that restrictive 
monetary policy would neither be able to deflate stock price bubbles as proposed by the 
“leaning against the wind” literature nor inflate them as predicted by rational bubble 
models, but expansionary monetary policy would inflate them. The bubble component of the 
bond market is not significant after both restrictive and expansionary shocks. Finally, the 
response of the bubble indicator of the housing market to a restrictive shock is not 
significant, but is very slightly negative after 12 months after an expansionary shock.  
 
For the EA, we find that neither restrictive nor expansionary monetary shocks have an effect 
on stock market bubbles. For the bond market, the bubble indicator responds positively after 
15 to 20 months to a restrictive shock and slightly negatively to an expansionary shock after 
10 months, consistent with the result of Gali and Gambetti (2015). The pattern is similar for 
the housing bubble which responds slightly positively to a restrictive shock after 10 months 
and negatively to an expansionary shock after 4 to 6 months. Monetary shocks account for 
between 3 and 5% of the variance of the two bubble components.  
 
Considering non-linear responses overall suggests that the impact of monetary policy on 
asset price bubbles is limited. In the US, only the stock market bubble would be inflated by 
expansionary monetary policy. At the opposite, expansionary monetary policy would 

                                                      
19 We compute the variance decomposition using partial R² that indicates the fraction of the improvement in R² 
that is contributed by the excluded covariate. 
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slightly deflate bubbles on the US housing market and the EA bond and housing markets, 
consistent with the prediction of rational bubble models. 
 

5. Insights about three policy debates 
 
The methodology described in sections 3 and 4 is used to address some specific policy issues. 
Two questions have been raised in the policy debate. Concerns have emerged about 
potential adverse effects of unconventional measures and notably quantitative easing 
policies, which might have fueled asset price bubbles. This debate is actually a variation of 
the debate on the risks associated to periods of prolonged expansionary policy when policy 
rates remain “too low for too long”. In reaction to this, it has been advocated that a “leaning 
against the wind” policy would help to mitigate asset price bubbles that may end in financial 
crises. These issues are dealt with by disentangling the non-linear effects of shocks to the 
policy rate before July 2008 and shocks to unconventional policies since July 2008. 
 
5.1. Does expansionary unconventional monetary policy create asset price bubbles? 
 
We first analyze the effect of unconventional monetary shocks identified after July 2008.20 We 
only consider expansionary monetary shocks in the US and in the EA (figure 8), which may 
be easily justified by the stance of monetary policy after 2008. The identification of shocks is 
realized with the method described in section 3 but for a shorter sample period and 
considering unconventional policies only. In the US, the responses of all three asset price 
bubbles to expansionary shocks suggest that unconventional measures would not feed 
bubbles. The response of the stock and the housing market bubbles is even negative, after 5 
months and between 2 and 10 months respectively. The bubble indicator on the bond market 
does not respond significantly to expansionary policy. Results for the EA lead to the same 
conclusion that unconventional policy has not inflated asset price bubbles. The bubble 
indicators of the three markets do not respond significantly to monetary shocks. The asset 
price bubble risk of unconventional policies does not materialize in the data. 
 
5.2. Would a “leaning against the wind” approach be effective? 
 
Figure 9 plots the responses of asset price bubbles to restrictive interest rate shocks based on 
estimations realized on a sub-sample ending in June 2008. In the US, results suggest that 
increasing interest rates would have a positive effect on stock price bubbles after 18 months, 
consistent with Gali and Gambetti (2015), but no effect on other asset price bubbles. The case 
for the “leaning against the wind” approach seems fragile as we find no evidence that 
restrictive monetary policy in the US would deflate bubbles. Contrary to the US, a restrictive 
shock to the policy rate produces a strong negative response of bubbles on the stock market 
in the EA between 15 and 24 months forward which accounts for up to 18% of the variance 
of the stock bubble indicator, while evidence based on the overall monetary stance showed 
no effect. The response is not significant for the bond and housing markets.  
 
5.3. Have interest rates been “too low for too long“? 
 
Figure 10 provides an assessment of the risks associated with expansionary monetary policy 
in normal times, when central banks use the policy rate as instrument of monetary policy. 

                                                      
20 It may be noted that the response of the bond market bubble might actually capture the transmission channel of 
QE policies, which consist in bond purchases. The aim of these asset purchases is precisely to trigger price 
distortions, which would be captured by our indicator. 
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The results suggest that the stock market bubble responds positively to an expansionary 
interest rate shock in the US and in the EA. The effects are significant during almost the first 
12 months in the US and around 12 to 15 months in the EA. An interest rate policy that 
would be too loose would then fuel a stock bubble. It would however have no effect on the 
bond and housing markets in the US. At the opposite, the same expansionary interest rate 
policy has a negative effect on the bubble components of bond and housing markets in the 
EA, consistent with the prediction of rational bubble models. The evidence provided here 
goes against the argument of Taylor (2009) that monetary policy would have been 
responsible for the housing bubble in the US after 2001. 
 

6. Conclusion 
 
Financial stability is now an objective for policymakers. The issue remains about whether 
central banks should change the conduct of monetary policy to achieve this goal. The answer 
to this question critically hinges on the influence of monetary policy on asset prices. Yet, it 
must be reminded that the reaction of asset prices is also part of the transmission channel of 
monetary policy. Central bankers must then avoid schizophrenic behavior, seeking to 
increase or decrease asset price as a way to stimulate the transmission channels of monetary 
policy and thwarting simultaneously asset price movements fearing financial instability. 
Consequently, central banks need to know if asset price movements are desirable or when 
monetary policy has negative side-effects. This paper deals with this issue and assesses the 
impact of monetary policy shocks on asset price bubbles. 
 
To this end, we propose to identify bubbles on stocks, bonds and housing markets based on 
a PCA analysis applied to a range of bubble models usually used in the literature. As none of 
existing models have reached consensus, we expect that these indicators based on a model-
averaging approach will provide a more comprehensive and relevant representation of asset 
price bubbles.  
 
The main result of this paper is that the impact of monetary policy on asset price bubbles is 
limited overall. Second, an important lesson is that the response of bubbles is not symmetric 
and calls for differentiating the responses to restrictive and expansionary shocks in empirical 
analyses. The hypothesis that expansionary monetary policy does inflate bubbles is rejected 
in all cases except for stock market bubbles in the US. At the opposite, expansionary 
monetary policy would slightly deflate bubbles on the US housing market and on the EA 
bond and housing markets, consistent with the prediction of rational bubble models. The risk 
that unconventional policies would inflate asset price bubbles does not materialize in the 
data and evidence even tends to support the opposite mechanism, consistent with the 
prediction of rational bubble models. We also find that the “leaning against the wind” 
strategy would not be able to deflate asset price bubbles except on the EA stock market. At 
the opposite, an expansionary interest rate policy would inflate stock market bubbles on the 
US and EA, but deflate them on EA bond and housing markets, consistent with the 
prediction of rational bubble models. 
 
These results suggest that monetary policy, overall, is not a relevant instrument for central 
banks to control asset price bubbles. However further research is still needed as financial 
instability may not only be seen through asset price bubbles leaving a role for monetary 
policy to dampen financial risks.  
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Figure 1. Bubbles in the US 

 

 

 
Note: authors’ estimations described in section 2. 
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Figure 2. Bubbles in the EA 

 

 

 
Note: authors’ estimations described in section 2.  
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Figure 3. Monetary shocks 
 

US overall monetary stance shocks (shadow rate) 

 
 

EA overall monetary stance shocks (shadow rate) 

  
 

Note: Monetary shocks are computed by estimated equations (8)-(9), (11) and (12) described in 
section 3.    
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Figure 4. Linear bubble responses to a restrictive (positive) shock  
to the overall monetary stance 

 
United States Euro Area 

 

 

 
Note: Shaded area represents the 95 per cent confidence interval of the response of the baseline shock (MP-
Shocks-RR). 
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Figure 5. Robustness analysis 
 

Responses to a restrictive shock to the overall monetary stance in the US 

 
 

Responses to a restrictive shock to the overall monetary stance in the EA 

 
Note: Shaded area represents the 95 per cent confidence interval around the r1 model response. 
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Figure 6. Non-linear effects of shocks to the overall monetary stance in the US 
 

 

 

 
 

 

Note: Shaded area represents the 95 per cent confidence interval around the non-linear response. 
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Figure 7. Non-linear effects of shocks to the overall monetary stance in the EA 
 

 

 

 
Note: Shaded area represents the 95 per cent confidence interval around the non-linear response. 
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Figure 8. Effects of expansionary shocks to unconventional policies  
 

United States Euro Area 

 

 

   
 

 

Note: Shaded area represents the 95 per cent confidence interval around the non-linear response. 
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Figure 9. Effects of restrictive shocks to the policy rate 
 

United States Euro Area 

   

 

 
Note: Shaded area represents the 95 per cent confidence interval around the non-linear response. 
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Figure 10. Effects of expansionary shocks to the policy rate 
 

United States Euro Area 

   

 

  
Note: Shaded area represents the 95 per cent confidence interval around the non-linear response.  
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Table 1. Range of bubble models 

 
 
 
 
  

ID Model
Estimation 

Method

Bubble 

identification

r1 Expected cash-flow OLS
Filtered and 

cumulated residual

r2 Expected cash-flow ECM
Filtered and 

cumulated residual

r3 Data rich information OLS
Filtered and 

cumulated residual

r4 Data rich information ECM
Filtered and 

cumulated residual

r5 Statistical approach
Christiano-Fitzgerald

 Filter

Deviation from the trend

beyond 1.5 standard deviation
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Table 2. Autocorrelation and white noise tests for residuals and 
 correlation structure between individual bubble series  

     

εOLS εECM νOLS νECM εOLS εECM νOLS νECM

0.00 0.65 0.85 0.57 0.00 0.13 0.69 0.21

0.00 0.98 0.85 0.99 0.00 0.36 0.14 0.74

εOLS εECM νOLS νECM εOLS εECM νOLS νECM

0.00 0.00 0.50 0.00 0.00 0.33 0.28 0.24

0.00 0.03 0.00 0.02 0.00 0.14 0.02 0.03

εOLS εECM νOLS νECM εOLS εECM νOLS νECM

0.00 0.00 0.00 0.00 0.00 0.29 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

r1 r2 r3 r4 r5 r1 r2 r3 r4 r5

r1 1 r1 1

r2 0.00 1 r2 -0.10 1

r3 0.14 0.37 1 r3 0.22 0.06 1

r4 -0.24 0.72 0.36 1 r4 -0.18 0.57 0.25 1

r5 0.49 0.41 0.38 0.20 1 r5 0.27 0.53 0.13 0.22 1

r1 r2 r3 r4 r5 r1 r2 r3 r4 r5

r1 1 r1 1

r2 -0.01 1 r2 0.00 1

r3 0.01 -0.09 1 r3 0.19 -0.02 1

r4 -0.02 0.96 -0.11 1 r4 0.22 0.83 -0.03 1

r5 0.33 0.13 -0.10 0.13 1 r5 0.41 0.25 0.14 0.28 1

r1 r2 r3 r4 r5 r1 r2 r3 r4 r5

r1 1 r1 1

r2 0.22 1 r2 0.59 1

r3 0.05 0.54 1 r3 0.05 -0.01 1

r4 -0.12 0.70 0.57 1 r4 0.16 0.64 -0.02 1

r5 0.16 -0.05 0.21 -0.14 1 r5 -0.32 -0.03 0.09 0.16 1

Portmanteau Portmanteau

Autocorrelation and white noise tests

Stock

Bonds

CumbyHuizinga CumbyHuizinga

Portmanteau

Stock

Bonds

Housing

Housing

Correlation structure between individual bubble series

Note: For each market, the lower panel reports p -values of autocorrelation and white noise tests.

CumbyHuizinga CumbyHuizinga

Portmanteau

United States Euro Area

CumbyHuizinga CumbyHuizinga

Portmanteau Portmanteau
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Table 3. PCA estimation 

 
 
  

Obs = 365 Obs = 205

Eigenvalue Proportion KMO stat Eigenvalue Proportion KMO stat

PCA_Stock 2.27 0.45 0.60 PCA_Stock 1.96 0.39 0.49

PCA_Bonds 2.02 0.40 0.51 PCA_Bonds 2.07 0.41 0.47

PCA_Hous. 2.22 0.44 0.55 PCA_Hous. 1.96 0.39 0.46

Variable PCA_Stock PCA_Bonds PCA_Hous. Variable PCA_Stock PCA_Bonds PCA_Hous.

r1 0.13 0.04 0.08 r1 0.04 0.30 0.53

r2 0.57 0.68 0.59 r2 0.61 0.58 0.67

r3 0.46 -0.15 0.54 r3 0.26 0.08 0.00

r4 0.50 0.68 0.59 r4 0.54 0.62 0.51

r5 0.45 0.20 0.01 r5 0.51 0.43 -0.12

Rotation: (unrotated=principal)

Principal components/correlation

Note: Kaiser-Meyer-Olkin measure of sampling adequacy

PC scoring coefficients (eigenvectors)

United States Euro Area

PC scoring coefficients (eigenvectors)

Rotation: (unrotated=principal)

Principal components/correlation
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Table 4. Correlation structure between bubble indicators and with fundamentals 

   

Stock Bonds Housing Stock Bonds Housing

1 1

0.29 1 -0.24 1

0.18 0.34 1 0.08 0.37 1

Bubble: Stock Bonds Housing Bubble: Stock Bonds Housing

Fundam. Fundam.

-0.11 0.23

-0.14 -0.07

-0.14 -0.01

Baseline: Stock Bonds Housing Baseline: Stock Bonds Housing

0.831 0.754 0.862 0.879 0.845 0.904

Contemp. 12m 36m Contemp. 12m 36m

0.999 0.999 0.998 0.999 0.999 0.984

0.999 0.996 0.970 0.961 0.956 0.934

0.969 0.972 0.999 0.999 0.879 0.914

1986-96 1996-06 2006-16 1999-05 2005-10 2010-16

0.957 0.995 0.996 0.974 0.765 0.881

0.890 0.984 0.972 0.674 0.760 0.974

0.918 0.964 0.991 0.978 0.942 0.848

Stock Bonds Housing Stock Bonds Housing

0.889 0.476 0.883 0.877 0.752 0.890

Stock Bonds Housing Stock Bonds Housing

0.806 0.774 0.575 0.889 0.622 0.834

United States Euro Area

Housing

Bonds

Stock

Housing

Bonds

Stock

Housing

Bonds

Stock

Housing

Bonds

Stock

DCF model with GMM

Inverting steps

Bubbles correlation

Bubble-Fundamental correlation

Bubbles correlation

Bubble-Fundamental correlation

PCA_Bonds

PCA_Stock

Sensitivity tests

PCA_Hous

PCA_Bonds

PCA_Stock

PCA_Hous

PCA_Bonds

PCA_Stock

PCA_Hous

PCA_Bonds

PCA_Stock

PCA_Hous

Subsample PCA estimation

PCA_cumfil PCA_cumfil

CF parameter: min: 15 & max: 144 periods

PCA_alt-CF PCA_alt-CF

Removing r4

PCA_without r4 PCA_without r4
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Table 5. Properties of estimated monetary shocks 

  

Variable Obs Mean Std. Dev. Min Max
mpshock_rr 366 0.00 0.18 -0.74 0.80
mpshock_tr 361 0.00 0.21 -0.93 0.95
mpshock_hf 200 0.00 0.00 -0.01 0.01
prshock_rr 267 0.00 0.14 -0.65 0.47

uncshock_rr 97 0.00 0.04 -0.14 0.16

mpshock_rr mpshock_tr mpshock_hf prshock_rr uncshock_rr
mpshock_rr 1
mpshock_tr 0.84 1
mpshock_hf 0.25 0.33 1
prshock_rr 0.81 0.68 0.21 1

uncshock_rr -0.15 -0.12 -0.03 x 1

Variable Obs W' V' z Prob>z
mpshock_rr 366 0.94 15.78 5.93 0.00
mpshock_tr 361 0.95 13.47 5.59 0.00
mpshock_hf 200 0.79 34.51 7.32 0.00
prshock_rr 267 0.97 5.73 3.68 0.00

uncshock_rr 97 0.87 11.56 4.83 0.00

AR(1) coef. F-stat p-value Adjusted R²
mpshock_rr 0.00 mpshock_rr 0.69 0.73 -0.01
mpshock_tr 0.45*** mpshock_tr 3.81 0.00 0.07
mpshock_hf 0.04 mpshock_hf 2.24 0.02 0.06
prshock_rr 0.01 prshock_rr 2.74 0.00 0.06

uncshock_rr -0.03 uncshock_rr 0.49 0.89 -0.06

Variable Obs Mean Std. Dev. Min Max
mpshock_rr 208 0.00 0.24 -1.12 0.90
mpshock_tr 203 0.00 0.28 -1.86 1.07
mpshock_hf 210 0.00 0.00 0.00 0.01
prshock_rr 111 0.00 0.10 -0.37 0.39

uncshock_rr 95 0.00 0.11 -0.31 0.50

mpshock_rr mpshock_tr mpshock_hf prshock_rr uncshock_rr
mpshock_rr 1
mpshock_tr 0.84 1
mpshock_hf 0.23 0.26 1
prshock_rr 0.72 0.60 0.18 1

uncshock_rr 0.01 0.06 0.02 x 1

Variable Obs W' V' z Prob>z
mpshock_rr 208 0.94 10.07 4.79 0.00
mpshock_tr 203 0.87 22.13 6.41 0.00
mpshock_hf 210 0.91 15.57 5.70 0.00
prshock_rr 111 0.95 4.68 3.07 0.00

uncshock_rr 95 0.89 9.98 4.53 0.00

AR(1) coef. F-stat p-value Adjusted R²
mpshock_rr -0.02 mpshock_rr 1.06 0.39 0.00
mpshock_tr 0.00 mpshock_tr 4.87 0.00 0.16
mpshock_hf 0.02 mpshock_hf 2.09 0.03 0.05
prshock_rr -0.01 prshock_rr 1.56 0.13 0.05

uncshock_rr -0.01 uncshock_rr 0.30 0.98 -0.08

Descriptive statistics

Correlation

Shapiro-Francia normality test

Autocorrelation test Predictability of exogenous shock series

Note: The vector of variables for predictability tests includes lagged values of inflation, ipi, gdp, shadow, eonia (or

ffr), oil, m3 (or m2), ciss (or vix), and bonds.

United States

Euro area

Descriptive statistics

Correlation

Shapiro-Francia normality test

Autocorrelation test Predictability of exogenous shock series
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APPENDIX 
NOT FOR PUBLICATION 

 
Table A. Data sources and Description 

 
 
  

Abbreviation Description Source Frequency Abbreviation Description Source Frequency

Stock eurostoxx Eurostoxx Datastream Monthly sp500 S&P 500 Datastream Monthly

Bonds bonds
Government 10-year

 benchmark bonds
Datastream Monthly bonds

Government 10-year

 benchmark bonds
Datastream Monthly

Housing housep
residential 

property prices
ECB Quarterly housep Shiller Index Shiller Monthly

Dividends divid_rsa

Dividends paid

 by financial and non-

financial corporations 

(5 EA countries)

Datastream Monthly divid_rsa
Paid dividends by 

corporations
BEA Quarterly

Rents rent

Rents received by 

households (5 EA 

countries)

Datastream Quarterly rent
Rents received by 

households
BEA Quarterly

Discount 

factor
txlg

long-term 

interest rates 
Datastream Monthly txlg

long-term 

interest rates 
Datastream Monthly

Risk 

Premium
vix Volatility Index

Chicago Board 

Options Exchange
Monthly vix Volatility Index

Chicago Board 

Options Exchange
Monthly

Income rdb real disposable
 income Eurostat Quarterly rdb real disposable
 income BEA Quarterly

Real GDP gdp real GDP Eurostat Quarterly gdp real GDP BEA Quarterly

IndPro ipi industrial 
production Eurostat Monthly ipi industrial 
production BEA Monthly

Oil prices oil oil prices Datastream Monthly oil oil prices Datastream Monthly

Inflation inf Inflation Eurostat Monthly inf inflation BEA Monthly

Confidence

 indicators

csind & 

cscons

Confidence indicators 

for households and 

industry

European 

Commission 
Monthly

csind & 

cscons

Confidence indicators 

for consumers and 

firms

Conference Board 

& ISM
Monthly

Financial 

stress 
ciss CISS ECB Monthly kcfsi

Kansas City 

Financial indicator
FRED Monthly

Monetary 

Aggregate
m3 M3 Datastream Monthly m2 M2 Datastream Monthly

Credit 

Aggregate
m3_credit

Credit counterparties 

of monetary aggregate 
Datastream Monthly credit

Credits granted by

 commercial banks 
Datastream Monthly

Policy rate eonia EONIA rate Datastream Monthly fedfunds Effective FFR Federal Reserve Monthly

Policy target MRO MRO rate ECB Monthly fedtarget FFR target Federal Reserve Monthly

shadow rate wu&xia shadow rate Wu & Xia (2015) Monthly wu&xia shadow rate Wu & Xia (2015) Monthly

shadow rate krippner shadow rate Krippner
(2016) Daily krippner shadow rate Krippner
(2016) Daily

Unconven-

tional 

measures

unconv

Securities Held for 

Monetary Policy 

Purposes (SHMPP) + 

LTRO

ECB Monthly unconv
Table H.4.1 Fed's total 

assets
Federal Reserve Monthly

Note: All nominal variables are deflated by the CPI. BEA = Bureau of Economic Analysis

Concept

Cash-flow model

Data rich information

Asset Prices

Monetary policy

Euro Area United States



 

 37 

Table B. Dataset - Descriptive statistics 

 
 
 
 
 

Table C. Individual bubble series - Descriptive statistics 

   
 
 
  

Variable Obs Mean Std. Dev. Min Max Variable Obs Mean Std. Dev. Min Max
sp500_r 368 6.36 0.47 5.36 7.11 eurostoxx_r 210 5.82 0.25 5.31 6.40
bonds_r 368 4.25 0.14 4.01 4.66 bonds_r 210 4.80 0.08 4.64 5.01
housep_r 368 4.16 0.16 3.96 4.52 housep_r 208 4.60 0.08 4.41 4.73
divid_rsa 368 4.30 0.44 3.43 4.96 divid_rsa 210 11.29 0.11 10.98 11.43

txlg_r 368 2.59 1.70 -1.85 6.03 txlg_r 210 1.88 0.94 0.34 4.39
rent_r 368 3.40 0.82 1.62 4.59 rent_r 210 6.37 0.04 6.28 6.46
rdb_r 368 7.25 0.20 6.88 7.58 rdb_r 208 6.27 0.04 6.18 6.33

ipi 368 -0.17 0.20 -0.56 0.06 ipi 210 4.62 0.05 4.50 4.74
gdp 368 8.29 0.23 7.86 8.63 gdp_r 210 6.65 0.06 6.51 6.73
inf 368 2.64 1.37 -1.96 6.38 inf 210 1.78 0.98 -0.62 4.13

m2_r 368 8.21 0.12 8.01 8.49 m3_r 210 9.06 0.18 8.70 9.31
credit_r 368 7.98 0.33 7.46 8.54 m3_credit_r 210 9.19 0.15 8.85 9.39

csind 368 52.04 4.85 33.10 61.40 csind 210 -0.10 1.03 -3.89 1.47
cscons 368 92.51 25.61 25.30 144.70 cscons 210 -0.14 1.10 -3.45 2.00
oil_r 368 2.96 0.54 1.82 4.11 oil_r 210 4.10 0.53 2.65 4.98
vix 368 2.96 0.36 2.33 4.18 vix 210 2.98 0.39 2.33 4.18

wu&xia 359 3.43 3.23 -2.99 9.85 wu&xia 210 1.56 2.20 -4.79 5.13
krippner 368 3.05 3.63 -5.37 9.85 krippner 210 1.21 2.55 -6.15 4.92

United States Euro Area

Model Obs Mean Std. Dev. Min Max Model Obs Mean Std. Dev. Min Max

r1 368 0.150 1.865 -4.403 4.664 r1 210 0.172 2.519 -5.010 5.559
r2 366 0.010 0.148 -0.468 0.326 r2 208 0.039 0.142 -0.372 0.293
r3 365 0.006 0.083 -0.191 0.205 r3 205 0.016 0.067 -0.089 0.259
r4 366 0.007 0.117 -0.296 0.309 r4 206 0.005 0.105 -0.261 0.215
r5 368 -0.005 0.362 -1 1 r5 210 -0.010 0.426 -1 1

r1 368 -0.066 0.797 -2.068 2.182 r1 210 -0.022 0.468 -1.123 0.915
r2 366 0.000 0.101 -0.359 0.215 r2 208 -0.003 0.033 -0.074 0.068
r3 365 0.000 0.007 -0.019 0.020 r3 205 0.000 0.010 -0.026 0.026
r4 365 0.003 0.107 -0.372 0.235 r4 206 -0.003 0.035 -0.096 0.080
r5 368 0.043 0.359 -1 1 r5 210 -0.048 0.424 -1 1

r1 368 0.028 0.615 -1.691 1.579 r1 208 0.044 0.339 -0.700 1.052
r2 366 0.000 0.010 -0.030 0.025 r2 206 -0.003 0.018 -0.039 0.038
r3 363 0.000 0.009 -0.019 0.018 r3 205 0.000 0.002 -0.006 0.008
r4 365 -0.001 0.010 -0.021 0.021 r4 206 -0.002 0.010 -0.026 0.020
r5 368 0.000 0.391 -1 1 r5 210 -0.010 0.353 -1 1

United States Euro Area

Stock

Bonds

Housing
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Figure A. Distribution of overall monetary stance shocks 
  

United States Euro Area 

 


